26 research outputs found

    Boomtown residents: Integration boundaries and the relationship between permanent and transient members

    Get PDF

    A Search for Electron Antineutrino Appearance at the Δm2∼\Delta m^2 \sim 1 eV2\mathrm{eV}^{2} Scale

    Get PDF
    The MiniBooNE Collaboration reports initial results from a search for νˉμ→νˉe\bar{\nu}_{\mu}\to\bar{\nu}_e oscillations. A signal-blind analysis was performed using a data sample corresponding to 3.39×10203.39 \times 10^{20} protons on target. The data are consistent with background prediction across the full range of neutrino energy reconstructed assuming quasielastic scattering, 200<EνQE<3000200 < E_{\nu}^{QE} < 3000 MeV: 144 electron-like events have been observed in this energy range, compared to an expectation of 139.2±17.6139.2 \pm 17.6 events. No significant excess of events has been observed, both at low energy, 200-475 MeV, and at high energy, 475-1250 MeV. The data are inconclusive with respect to antineutrino oscillations suggested by data from the Liquid Scintillator Neutrino Detector at Los Alamos National Laboratory.Comment: 5 pages, 3 figures, 2 table

    Measurement of the neutrino component of an anti-neutrino beam observed by a non-magnetized detector

    Get PDF
    Two independent methods are employed to measure the neutrino flux of the anti-neutrino-mode beam observed by the MiniBooNE detector. The first method compares data to simulated event rates in a high purity \numu induced charged-current single \pip (CC1\pip) sample while the second exploits the difference between the angular distributions of muons created in \numu and \numub charged-current quasi-elastic (CCQE) interactions. The results from both analyses indicate the prediction of the neutrino flux component of the pre-dominately anti-neutrino beam is over-estimated - the CC1\pip analysis indicates the predicted \numu flux should be scaled by 0.76±0.110.76 \pm 0.11, while the CCQE angular fit yields 0.65±0.230.65 \pm 0.23. The energy spectrum of the flux prediction is checked by repeating the analyses in bins of reconstructed neutrino energy, and the results show that the spectral shape is well modeled. These analyses are a demonstration of techniques for measuring the neutrino contamination of anti-neutrino beams observed by future non-magnetized detectors.Comment: 15 pages, 7 figures, published in Physical Review D, latest version reflects changes from referee comment

    Measurement of the \nu_\mu charged current \pi^+ to quasi-elastic cross section ratio on mineral oil in a 0.8 GeV neutrino beam

    Get PDF
    Using high statistics samples of charged current νμ\nu_\mu interactions, MiniBooNE reports a measurement of the single charged pion production to quasi-elastic cross section ratio on mineral oil (CH2_2), both with and without corrections for hadron re-interactions in the target nucleus. The result is provided as a function of neutrino energy in the range 0.4 GeV <Eν<< E_\nu < 2.4 GeV with 11% precision in the region of highest statistics. The results are consistent with previous measurements and the prediction from historical neutrino calculations.Comment: 4 pages, 2 figure

    First Observation of Coherent π0\pi^0 Production in Neutrino Nucleus Interactions with Eν<E_{\nu}< 2 GeV

    Get PDF
    The MiniBooNE experiment at Fermilab has amassed the largest sample to date of π0\pi^0s produced in neutral current (NC) neutrino-nucleus interactions at low energy. This paper reports a measurement of the momentum distribution of π0\pi^0s produced in mineral oil (CH2_2) and the first observation of coherent π0\pi^0 production below 2 GeV. In the forward direction, the yield of events observed above the expectation for resonant production is attributed primarily to coherent production off carbon, but may also include a small contribution from diffractive production on hydrogen. Integrated over the MiniBooNE neutrino flux, the sum of the NC coherent and diffractive modes is found to be (19.5 ±\pm1.1 (stat) ±\pm2.5 (sys))% of all exclusive NC π0\pi^0 production at MiniBooNE. These measurements are of immediate utility because they quantify an important background to MiniBooNE's search for νμ→νe\nu_{\mu} \to \nu_e oscillations.Comment: Submitted to Phys. Lett.

    A group randomized trial of a complexity-based organizational intervention to improve risk factors for diabetes complications in primary care settings: study protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most patients with type 2 diabetes have suboptimal control of their glucose, blood pressure (BP), and lipids – three risk factors for diabetes complications. Although the chronic care model (CCM) provides a roadmap for improving these outcomes, developing theoretically sound implementation strategies that will work across diverse primary care settings has been challenging. One explanation for this difficulty may be that most strategies do not account for the complex adaptive system (CAS) characteristics of the primary care setting. A CAS is comprised of individuals who can learn, interconnect, self-organize, and interact with their environment in a way that demonstrates non-linear dynamic behavior. One implementation strategy that may be used to leverage these properties is practice facilitation (PF). PF creates time for learning and reflection by members of the team in each clinic, improves their communication, and promotes an individualized approach to implement a strategy to improve patient outcomes.</p> <p>Specific objectives</p> <p>The specific objectives of this protocol are to: evaluate the effectiveness and sustainability of PF to improve risk factor control in patients with type 2 diabetes across a variety of primary care settings; assess the implementation of the CCM in response to the intervention; examine the relationship between communication within the practice team and the implementation of the CCM; and determine the cost of the intervention both from the perspective of the organization conducting the PF intervention and from the perspective of the primary care practice.</p> <p>Intervention</p> <p>The study will be a group randomized trial conducted in 40 primary care clinics. Data will be collected on all clinics, with 60 patients in each clinic, using a multi-method assessment process at baseline, 12, and 24 months. The intervention, PF, will consist of a series of practice improvement team meetings led by trained facilitators over 12 months. Primary hypotheses will be tested with 12-month outcome data. Sustainability of the intervention will be tested using 24 month data. Insights gained will be included in a delayed intervention conducted in control practices and evaluated in a pre-post design.</p> <p>Primary and secondary outcomes</p> <p>To test hypotheses, the unit of randomization will be the clinic. The unit of analysis will be the repeated measure of each risk factor for each patient, nested within the clinic. The repeated measure of glycosylated hemoglobin A1c will be the primary outcome, with BP and Low Density Lipoprotein (LDL) cholesterol as secondary outcomes. To study change in risk factor level, a hierarchical or random effect model will be used to account for the nesting of repeated measurement of risk factor within patients and patients within clinics.</p> <p>This protocol follows the CONSORT guidelines and is registered per ICMJE guidelines:</p> <p>Clinical Trial Registration Number</p> <p>NCT00482768</p

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Event Excess in the MiniBooNE Search for νˉμ→νˉe\bar \nu_\mu \rightarrow \bar \nu_e Oscillations

    Get PDF
    The MiniBooNE experiment at Fermilab reports results from a search for νˉμ→νˉe\bar \nu_\mu \rightarrow \bar \nu_e oscillations, using a data sample corresponding to 5.66×10205.66 \times 10^{20} protons on target. An excess of 20.9±14.020.9 \pm 14.0 events is observed in the energy range 475<EνQE<1250475<E_\nu^{QE}<1250 MeV, which, when constrained by the observed νˉμ\bar \nu_\mu events, has a probability for consistency with the background-only hypothesis of 0.5\%. On the other hand, fitting for νˉμ→νˉe\bar{\nu}_{\mu}\rightarrow\bar{\nu}_e oscillations, the best-fit point has a χ2\chi^2-probability of 8.7\%. The data are consistent with νˉμ→νˉe\bar \nu_\mu \rightarrow \bar \nu_e oscillations in the 0.1 to 1.0 eV2^2 Δm2\Delta m^2 range and with the evidence for antineutrino oscillations from the Liquid Scintillator Neutrino Detector at Los Alamos National Laboratory.Comment: Revised abstrac

    A search for muon neutrino and antineutrino disappearance in MiniBooNE

    Get PDF
    The MiniBooNE Collaboration reports a search for \numu and \numubar disappearance in the \dmsq region of a few \evsq. These measurements are important for constraining models with extra types of neutrinos, extra dimensions an d CPT violation. Fits to the shape of the \numu and \numubar energy spectra reveal no evidence for disappearance at 90% confidence level (CL) in either mode. This is the first test of \numubar disappearance between \dmsq=0.1-10\evsq.Comment: 10 pages, 3 figures, submitted to PR

    The MiniBooNE Detector

    Get PDF
    The MiniBooNE neutrino detector was designed and built to look for muon-neutrino to electron-neutrino oscillations in the mixing parameter space region where the LSND experiment reported a signal. The MiniBooNE experiment used a beam energy and baseline that were an order of magnitude larger than those of LSND so that the backgrounds and systematic errors would be completely different. This paper provides a detailed description of the design, function, and performance of the MiniBooNE detector.Comment: 46 pages, 21 figure
    corecore